

FBW

10-11-2010

Wim Van Criekinge

Programming

• Variables

• Flow control (if, regex …)

• Loops

• input/output

• Subroutines/object

Three Basic Data Types

• Scalars - $

• Arrays of scalars - @

• Associative arrays of

scalers or Hashes - %

Customize textpad part 1: Create Document Class

• Document classes

Customize textpad part 2: Add Perl to “Tools Menu”

• Syntax highlighting

• Run program (prompt for parameters)

• Show line numbers

• Clip-ons for web with perl syntax

• ….

Unzip to textpad samples directory

Bereken Pi aan de hand van twee random getallen

1

x

y

Introduction

Buffon's Needle is one of the oldest problems in the
field of geometrical probability. It was first stated
in 1777. It involves dropping a needle on a lined
sheet of paper and determining the probability of
the needle crossing one of the lines on the page.
The remarkable result is that the probability is
directly related to the value of pi.

http://www.angelfire.com/wa/hurben/buff.html

In Postscript you send it too the printer … PS has no
variables but “stacks”, you can mimick this in Perl
by recursively loading and rewriting a subroutine

http://www.angelfire.com/wa/hurben/buff.html
http://images.google.com/imgres?imgurl=http://home.wlu.edu/~mcraea/GeometricProbabilityFolder/Introduction/Problem1/images/Buffon.jpg&imgrefurl=http://home.wlu.edu/~mcraea/GeometricProbabilityFolder/Introduction/Problem1/Problem1.htm&h=245&w=153&sz=28&tbnid=rJfx6cZA5ckJ:&tbnh=105&tbnw=65&hl=en&start=18&prev=/images%3Fq%3Dbuffon%2Bneedle%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DSNYD,SNYD:2004-12,SNYD:en

–http://www.csse.monash.edu.au/~damian/papers/HTML/Perligata.html

http://www.csse.monash.edu.au/~damian/papers/HTML/Perligata.html

Two brief diversions (warnings & strict)

• Use warnings;

• Use strict;

• strict – forces you to „declare‟ a variable the
first time you use it.
– usage: use strict; (somewhere near the top of

your script)

• declare variables with „my‟
– usage: my $variable;

– or: my $variable = „value‟;

• my sets the „scope‟ of the variable. Variable
exists only within the current block of code

• use strict and my both help you to debug
errors, and help prevent mistakes.

Practicum Bioinformatica

• Practicum PC Zaal D

– 8u30 – 11u30

• Recap

• Installeren en werken met TextPad

• Regex

• Arrays/hashes

What is a regular expression?

• A regular expression (regex) is simply a

way of describing text.

• Regular expressions are built up of small

units (atoms) which can represent the

type and number of characters in the text

• Regular expressions can be very broad

(describing everything), or very narrow

(describing only one pattern).

Why would you use a regex?

• Often you wish to test a string for the

presence of a specific character, word,

or phrase

– Examples

• “Are there any letter characters in my string?”

• “Is this a valid accession number?”

• “Does my sequence contain a start codon

(ATG)?”

Regular Expressions

Match to a sequence of characters

The EcoRI restriction enzyme cuts at the consensus
sequence GAATTC.

To find out whether a sequence contains a restriction site
for EcoR1, write;

if ($sequence =~ /GAATTC/) {

...

};

• [m]/PATTERN/[g][i][o]

• s/PATTERN/PATTERN/[g][i][e][o]

• tr/PATTERNLIST/PATTERNLIST/[c][d][s]

Regular Expressions

Match to a character class

• Example

• The BstYI restriction enzyme cuts at the consensus sequence rGATCy,
namely A or G in the first position, then GATC, and then T or C. To find
out whether a sequence contains a restriction site for BstYI, write;

• if ($sequence =~ /[AG]GATC[TC]/) {...}; # This will match all of
AGATCT, GGATCT, AGATCC, GGATCC.

Definition

• When a list of characters is enclosed in square brackets [], one and
only one of these characters must be present at the corresponding
position of the string in order for the pattern to match. You may specify
a range of characters using a hyphen -.

• A caret ^ at the front of the list negates the character class.

Examples

• if ($string =~ /[AGTC]/) {...}; # matches any nucleotide

• if ($string =~ /[a-z]/) {...}; # matches any lowercase letter

• if ($string =~ /chromosome[1-6]/) {...}; # matches chromosome1,
chromosome2 ... chromosome6

• if ($string =~ /[^xyzXYZ]/) {...}; # matches any character except x, X, y,
Y, z, Z

Constructing a Regex

• Pattern starts and ends with a / /pattern/

– if you want to match a /, you need to escape it

• \/ (backslash, forward slash)

– you can change the delimiter to some other

character, but you probably won‟t need to

• m|pattern|

• any „modifiers‟ to the pattern go after the last /
• i : case insensitive /[a-z]/i

• o : compile once

• g : match in list context (global)

• m or s : match over multiple lines

Looking for a pattern

• By default, a regular expression is applied to

$_ (the default variable)

– if (/a+/) {die}

• looks for one or more „a‟ in $_

• If you want to look for the pattern in any other

variable, you must use the bind operator

– if ($value =~ /a+/) {die}

• looks for one or more „a‟ in $value

• The bind operator is in no way similar to the

„=„ sign!! = is assignment, =~ is bind.

– if ($value = /[a-z]/) {die}

• Looks for one or more „a‟ in $_, not $value!!!

Regular Expression Atoms

• An „atom‟ is the smallest unit of a regular

expression.

• Character atoms
• 0-9, a-Z match themselves

• . (dot) matches everything

• [atgcATGC] : A character class (group)

• [a-z] : another character class, a through z

More atoms

• \d - All Digits

• \D - Any non-Digit

• \s - Any Whitespace (\s, \t, \n)

• \S - Any non-Whitespace

• \w - Any Word character [a-zA-Z_0-9]

• \W - Any non-Word character

An example

• if your pattern is /\d\d\d-\d\d\d\d/

– You could match

• 555-1212

• 5512-12222

• 555-5155-55

– But not:

• 55-1212

• 555-121

• 555j-5555

Quantifiers

• You can specify the number of times

you want to see an atom. Examples

• \d* : Zero or more times

• \d+ : One or more times

• \d{3} : Exactly three times

• \d{4,7} : At least four, and not more than

seven

• \d{3,} : Three or more times

• We could rewrite /\d\d\d-\d\d\d\d/ as:

– /\d{3}-\d{4}/

Anchors

• Anchors force a pattern match to a

certain location

• ^ : start matching at beginning of string

• $: start matching at end of string

• \b : match at word boundary (between \w and

\W)

• Example:

• /^\d\d\d-\d\d\d\d$/ : matches only valid phone

numbers

Grouping

• You can group atoms together with

parentheses

• /cat+/ matches cat, catt, cattt

• /(cat)+/ matches cat, catcat, catcatcat

• Use as many sets of parentheses as you

need

Alternation

• You can specify patterns which match

either one thing or another.

– /cat|dog/ matches either „cat‟ or „dog‟

– /ca(t|d)og/ matches either „catog‟ or „cadog‟

Variable interpolation

• You can put variables into your pattern.

– if $string = „cat‟

• /$string/ matches „cat‟

• /$string+/ matches „cat‟, „catcat‟, etc.

• /\d{2}$string+/ matches „12cat‟, „24catcat‟, etc.

Regular Expression Review

• A regular expression (regex) is a way of

describing text.

• Regular expressions are built up of small

units (atoms) which can represent the type

and number of characters in the text

• You can group or quantify atoms to describe

your pattern

• Always use the bind operator (=~) to apply

your regular expression to a variable

Remembering Stuff

• Being able to match patterns is good,

but limited.

• We want to be able to keep portions of

the regular expression for later.

– Example: $string = „phone: 353-7236‟

• We want to keep the phone number only

• Just figuring out that the string contains a

phone number is insufficient, we need to keep

the number as well.

Memory Parentheses (pattern memory)

• Since we almost always want to keep

portions of the string we have matched,

there is a mechanism built into perl.

• Anything in parentheses within the

regular expression is kept in memory.

– „phone:353-7236‟ =~ /^phone\:(.+)$/;

• Perl knows we want to keep everything that

matches „.+‟ in the above pattern

Getting at pattern memory

• Perl stores the matches in a series of default

variables. The first parentheses set goes into

$1, second into $2, etc.

– This is why we can‟t name variables ${digit}

– Memory variables are created only in the amounts

needed. If you have three sets of parentheses, you

have ($1,$2,$3).

– Memory variables are created for each matched set

of parentheses. If you have one set contained

within another set, you get two variables (inner set

gets lowest number)

– Memory variables are only valid in the current scope

An example of pattern memory

my $string = shift;

if ($string =~ /^phone\:(\d{3}-\d{4})$/){

$phone_number = $1;

}

else {

print “Enter a phone number!\n”

}

Finding all instances of a match

• Use the „g‟ modifier to the regular

expression

– @sites = $sequence =~ /(TATTA)/g;

– think g for global

– Returns a list of all the matches (in order),

and stores them in the array

– If you have more than one pair of

parentheses, your array gets values in sets

• ($1,$2,$3,$1,$2,$3...)

Perl is Greedy

• In addition to taking all your time, perl regular

expressions also try to match the largest

possible string which fits your pattern

– /ga+t/ matches gat, gaat, gaaat

– „Doh! No doughnuts left!‟ =~ /(d.+t)/

• $1 contains „doughnuts left‟

• If this is not what you wanted to do, use the

„?‟ modifier

– /(d.+?t)/ # match as few „.‟s as you can

and still make the pattern work

Substitute function

• s/pattern1/pattern2/;

• Looks kind of like a regular expression

– Patterns constructed the same way

• Inherited from previous languages, so it

can be a bit different.

– Changes the variable it is bound to!

Using s

• Substituting one word for another

– $string =~ s/dogs/cats/;

• If $string was “I love dogs”, it is now “I love cats”

• Removing trailing white space

– $string =~ s/\s+$//;

• If $string was „ATG „, it is now „ATG‟

• Adding 10 to every number in a string

– $string =~ /(\d+)/$1+10/ge;

• If string was “I bought 5 dogs at 2 bucks each”, it is now:

– “I bought 15 dogs at 12 bucks each”

• Note pattern memory!!

• g means global (just like a regex)

• e is special to s, evaluate the expression on the right

Substitutions

tr function

• translate or transliterate

• tr/characterlist1/characterlist2/;

• Even less like a regular expression than

s

• substitutes characters in the first list

with characters in the second list

$string =~ tr/a/A/; # changes every „a‟ to an

„A‟

– No need for the g modifier when using tr.

Translations

Using tr

• Creating complimentary DNA sequence

– $sequence =~ tr/atgc/TACG/;

• Sneaky Perl trick for the day

– tr does two things.

• 1. changes characters in the bound variable

• 2. Counts the number of times it does this

– Super-fast character counter™

• $a_count = $sequence =~ tr/a/a/;

• replaces an „a‟ with an „a‟ (no net change), and

assigns the result (number of substitutions) to

$a_count

• Regex-Related Special Variables

• Perl has a host of special variables that get filled after every m// or s///
regex match. $1, $2, $3, etc. hold the backreferences. $+ holds the last
(highest-numbered) backreference. $& (dollar ampersand) holds the
entire regex match.

• @- is an array of match-start indices into the string. $-[0] holds the start of
the entire regex match, $-[1] the start of the first backreference, etc.
Likewise, @+ holds match-end indices (ends, not lengths).

• $' (dollar followed by an apostrophe or single quote) holds the part of the
string after (to the right of) the regex match. $` (dollar backtick) holds the
part of the string before (to the left of) the regex match. Using these
variables is not recommended in scripts when performance matters, as it
causes Perl to slow down all regex matches in your entire script.

• All these variables are read-only, and persist until the next regex match is
attempted. They are dynamically scoped, as if they had an implicit 'local'
at the start of the enclosing scope. Thus if you do a regex match, and call
a sub that does a regex match, when that sub returns, your variables are
still set as they were for the first match.

http://www.regular-expressions.info/brackets.html

• Finding All Matches In a String

• The "/g" modifier can be used to process all regex
matches in a string. The first m/regex/g will find the
first match, the second m/regex/g the second match,
etc. The location in the string where the next match
attempt will begin is automatically remembered by
Perl, separately for each string. Here is an example:

• while ($string =~ m/regex/g) { print "Found '$&'. Next
attempt at character " . pos($string)+1 . "\n"; } The
pos() function retrieves the position where the next
attempt begins. The first character in the string has
position zero. You can modify this position by using
the function as the left side of an assignment, like in
pos($string) = 123;.

Regex

• O‟Reilly book: Mastering regular expressions

(2nd edition)

• Regular Expressions Tutorial

• http://www.regular-

expressions.info/examples.html

http://www.zvon.org/other/PerlTutorial/Books/Book1/index.html
http://www.regular-expressions.info/examples.html
http://www.regular-expressions.info/examples.html
http://www.regular-expressions.info/examples.html

Oefeningen practicum 2

1. Which of following 4 sequences (seq1/2/3/4)

a) contains a “Galactokinase signature”

b) How many of them?

c) Where (hints:pos and $&) ?

http://us.expasy.org/prosite/

>SEQ1

MGNLFENCTHRYSFEYIYENCTNTTNQCGLIRNVASSIDVFHWLDVYISTTIFVISGILNFYCLFIALYT
YYFLDNETRKHYVFVLSRFLSSILVIISLLVLESTLFSESLSPTFAYYAVAFSIYDFSMDTLFFSYIMIS
LITYFGVVHYNFYRRHVSLRSLYIILISMWTFSLAIAIPLGLYEAASNSQGPIKCDLSYCGKVVEWITCS
LQGCDSFYNANELLVQSIISSVETLVGSLVFLTDPLINIFFDKNISKMVKLQLTLGKWFIALYRFLFQMT
NIFENCSTHYSFEKNLQKCVNASNPCQLLQKMNTAHSLMIWMGFYIPSAMCFLAVLVDTYCLLVTISILK
SLKKQSRKQYIFGRANIIGEHNDYVVVRLSAAILIALCIIIIQSTYFIDIPFRDTFAFFAVLFIIYDFSILSLLGSFTGVAM
MTYFGVMRPLVYRDKFTLKTIYIIAFAIVLFSVCVAIPFGLFQAADEIDGPIKCDSESCELIVKWLLFCI
ACLILMGCTGTLLFVTVSLHWHSYKSKKMGNVSSSAFNHGKSRLTWTTTILVILCCVELIPTGLLAAFGK
SESISDDCYDFYNANSLIFPAIVSSLETFLGSITFLLDPIINFSFDKRISKVFSSQVSMFSIFFCGKR

>SEQ2

MLDDRARMEA AKKEKVEQIL AEFQLQEEDL KKVMRRMQKE MDRGLRLETH EEASVKMLPT YVRSTPEGSE VGDFLSLDLG GTNFRVMLVK
VGEGEEGQWS VKTKHQMYSI PEDAMTGTAE MLFDYISECI SDFLDKHQMK HKKLPLGFTF SFPVRHEDID KGILLNWTKG
FKASGAEGNN VVGLLRDAIK RRGDFEMDVV AMVNDTVATM ISCYYEDHQC EVGMIVGTGC NACYMEEMQN VELVEGDEGR
MCVNTEWGAF GDSGELDEFL LEYDRLVDES SANPGQQLYE KLIGGKYMGE LVRLVLLRLV DENLLFHGEA SEQLRTRGAF
ETRFVSQVES DTGDRKQIYN ILSTLGLRPS TTDCDIVRRA CESVSTRAAH MCSAGLAGVI NRMRESRSED VMRITVGVDG SVYKLHPSFK
ERFHASVRRL TPSCEITFIE SEEGSGRGAA LVSAVACKKA CMLGQ

>SEQ3

MESDSFEDFLKGEDFSNYSYSSDLPPFLLDAAPCEPESLEINKYFVVIIYVLVFLLSLLGNSLVMLVILY
SRVGRSGRDNVIGDHVDYVTDVYLLNLALADLLFALTLPIWAASKVTGWIFGTFLCKVVSLLKEVNFYSGILLLACISVDRY
LAIVHATRTLTQKRYLVKFICLSIWGLSLLLALPVLIFRKTIYPPYVSPVCYEDMGNNTANWRMLLRILP
QSFGFIVPLLIMLFCYGFTLRTLFKAHMGQKHRAMRVIFAVVLIFLLCWLPYNLVLLADTLMRTWVIQET
CERRNDIDRALEATEILGILGRVNLIGEHWDYHSCLNPLIYAFIGQKFRHGLLKILAIHGLISKDSLPKDSRPSFVGSSSGH TSTTL

>SEQ4

MEANFQQAVK KLVNDFEYPT ESLREAVKEF DELRQKGLQK NGEVLAMAPA FISTLPTGAE TGDFLALDFG GTNLRVCWIQ LLGDGKYEMK
HSKSVLPREC VRNESVKPII DFMSDHVELF IKEHFPSKFG CPEEEYLPMG FTFSYPANQV SITESYLLRW TKGLNIPEAI NKDFAQFLTE
GFKARNLPIR IEAVINDTVG TLVTRAYTSK ESDTFMGIIF GTGTNGAYVE QMNQIPKLAG KCTGDHMLIN MEWGATDFSC LHSTRYDLLL
DHDTPNAGRQ IFEKRVGGMY LGELFRRALF HLIKVYNFNE GIFPPSITDA WSLETSVLSR MMVERSAENV RNVLSTFKFR FRSDEEALYL
WDAAHAIGRR AARMSAVPIA SLYLSTGRAG KKSDVGVDGS LVEHYPHFVD MLREALRELI GDNEKLISIG IAKDGSGIGA ALCALQAVKE
KKGLA MEANFQQAVK KLVNDFEYPT ESLREAVKEF DELRQKGLQK NGEVLAMAPA FISTLPTGAE TGDFLALDFG GTNLRVCWIQ
LLGDGKYEMK HSKSVLPREC VRNESVKPII DFMSDHVELF IKEHFPSKFG CPEEEYLPMG FTFSYPANQV SITESYLLRW TKGLNIPEAI
NKDFAQFLTE GFKARNLPIR IEAVINDTVG TLVTRAYTSK ESDTFMGIIF GTGTNGAYVE QMNQIPKLAG KCTGDHMLIN MEWGATDFSC
LHSTRYDLLL DHDTPNAGRQ IFEKRVGGMY LGELFRRALF HLIKVYNFNE GIFPPSITDA WSLETSVLSR MMVERSAENV RNVLSTFKFR
FRSDEEALYL WDAAHAIGRR AARMSAVPIA SLYLSTGRAG KKSDVGVDGS LVEHYPHFVD MLREALRELI GDNEKLISIG IAKDGSGIGA
ALCALQAVKE KKGLA

Three Basic Data Types

• Scalars - $

• Arrays of scalars - @

• Associative arrays of scalers or

Hashes - %

Arrays

Definitions

• A scalar variable contains a scalar value: one number or one
string. A string might contain many words, but Perl regards it as
one unit.

• An array variable contains a list of scalar data: a list of numbers
or a list of strings or a mixed list of numbers and strings. The
order of elements in the list matters.

Syntax

• Array variable names start with an @ sign.

• You may use in the same program a variable named $var and
another variable named @var, and they will mean two different,
unrelated things.

Example

• Assume we have a list of numbers which were obtained as a
result of some measurement. We can store this list in an array
variable as the following:

• @msr = (3, 2, 5, 9, 7, 13, 16);

The foreach construct

The foreach construct iterates over a list of scalar
values (e.g. that are contained in an array) and
executes a block of code for each of the values.

• Example:
– foreach $i (@some_array) {

– statement_1;

– statement_2;

– statement_3; }

– Each element in @some_array is aliased to the variable $i in
turn, and the block of code inside the curly brackets {} is
executed once for each element.

• The variable $i (or give it any other name you wish) is
local to the foreach loop and regains its former value
upon exiting of the loop.

• Remark $_

Examples for using the foreach construct - cont.

• Calculate sum of all array elements:

#!/usr/local/bin/perl

@msr = (3, 2, 5, 9, 7, 13, 16);

$sum = 0;

foreach $i (@msr) {

$sum += $i; }

print "sum is: $sum\n";

Accessing individual array elements

Individual array elements may be accessed by
indicating their position in the list (their index).

Example:

@msr = (3, 2, 5, 9, 7, 13, 16);

index value 0 3 1 2 2 5 3 9 4 7 5 13 6 16

First element: $msr[0] (here has the value of 3),

Third element: $msr[2] (here has the value of
5),

and so on.

The sort function

The sort function receives a list of variables (or an array) and returns the sorted list.

@array2 = sort (@array1);

#!/usr/local/bin/perl

@countries = ("Israel", "Norway", "France", "Argentina");

@sorted_countries = sort (@countries);

print "ORIG: @countries\n", "SORTED: @sorted_countries\n";

Output:

ORIG: Israel Norway France Argentina

SORTED: Argentina France Israel Norway

#!/usr/local/bin/perl

@numbers = (1 ,2, 4, 16, 18, 32, 64);

@sorted_num = sort (@numbers);

print "ORIG: @numbers \n", "SORTED: @sorted_num \n";

Output:

ORIG: 1 2 4 16 18 32 64

SORTED: 1 16 18 2 32 4 64

Note that sorting numbers does not happen numerically, but by the string values of
each number.

The push and shift functions

The push function adds a variable or a list of variables to the end of a given
array.

Example:

$a = 5;

$b = 7;

@array = ("David", "John", "Gadi");

push (@array, $a, $b);

@array is now ("David", "John", "Gadi", 5, 7)

The shift function removes the first element of a given array and returns this
element.

Example:

@array = ("David", "John", "Gadi");

$k = shift (@array);

@array is now ("John", "Gadi"); # $k is now "David"

Note that after both the push and shift operations the given array @array is
changed!

How can I know the length of a given array?

You have three options:

• Assing the array variable into a scalar variable, as in
the previous slide. This is not recommended,
because the code is confusing.

• Use the scalar function. Example:
– $x = scalar (@array); # $x now contains the number of

elements in @array.

• Use the special variable $#array_name to get the
index value of the last element of @array_name.
Example:
– @fruits = ("apple", "orange", "banana", "melon");

– $a = $#fruits;

– # $a is now 3;

– $b = $#fruits + 1;

– # $b is now 4, i.e. # the no. of elements in @fruits.

http://bioinformatics.weizmann.ac.il/courses/prog/arrays/12.html

Special array for command line arguments @ARGV

#!/usr/bin/perl -w

print out user-entered command line
arguments

foreach $arg (@ARGV) {

print each argument followed by <tab>

print $arg . "\t";

}

print hard return

print "\n";

Perl Array review

• An array is designated with the ‘@’ sign

• An array is a list of individual elements

• Arrays are ordered
– Your list stays in the same order that you created it, although

you can add or subtract elements to the front or back of the
list

• You access array elements by number, using the
special syntax:
– $array[1] returns the „1th‟ element of the array (remember

perl starts counting at zero)

• You can do anything with an array element that
you can do with a scalar variable (addition,
subtraction, printing … whatever)

Generate random string

for($n=1;$n<=50;$n++){

@a = ("A","C","G","T");

$b=$a[rand(@a)];

$r.=$b;

}

print $r;

Text Processing Functions

The split function

• The split function splits a string to a list of substrings according to the
positions of a given delimiter. The delimiter is written as a pattern
enclosed by slashes: /PATTERN/. Examples:

• $string = "programming::course::for::bioinformatics";

• @list = split (/::/, $string);

• # @list is now ("programming", "course", "for", "bioinformatics") # $string
remains unchanged.

• $string = "protein kinase C\t450 Kilodaltons\t120 Kilobases";

• @list = split (/\t/, $string); #\t indicates tab #

• @list is now ("protein kinase C", "450 Kilodaltons", "120 Kilobases")

Text Processing Functions

The join function

• The join function does the opposite of split. It receives a delimiter and a
list of strings, and joins the strings into a single string, such that they are
separated by the delimiter.

• Note that the delimiter is written inside quotes.

• Examples:

• @list = ("programming", "course", "for", "bioinformatics");

• $string = join ("::", @list);

• # $string is now "programming::course::for::bioinformatics"

• $name = "protein kinase C"; $mol_weight = "450 Kilodaltons";
$seq_length = "120 Kilobases";

• $string = join ("\t", $name, $mol_weight, $seq_length);

• # $string is now: # "protein kinase C\t450 Kilodaltons\t120 Kilobases"

Three Basic Data Types

• Scalars - $

• Arrays of scalars - @

• Associative arrays of scalers or

Hashes - %

When is an array not good enough?

• Sometimes you want to associate a given

value with another value. (name/value pairs)

(Rob => 353-7236, Matt => 353-7122,

Joe_anonymous => 555-1212)

(Acc#1 => sequence1, Acc#2 => sequence2, Acc#n

=> sequence-n)

• You could put this information into an array,

but it would be difficult to keep your names

and values together (what happens when you

sort? Yuck)

Problem solved: The associative array

• As the name suggests, an associative array
allows you to link a name with a value

• In perl-speak: associative array = hash
– „hash‟ is the preferred term, for various arcane reasons,

including that it is easier to say.

• Consider an array: The elements (values) are
each associated with a name – the index position.
These index positions are numerical, sequential,
and start at zero.

• A hash is similar to an array, but we get to name
the index positions anything we want

The „structure‟ of a Hash

• An array looks something like this:

@array =
Index

Value

0 1 2

'val1' 'val2' 'val3'

The „structure‟ of a Hash

• An array looks something like this:

• A hash looks something like this:

@array =
Index

Value

0 1 2

'val1' 'val2' 'val3'

Rob Matt Joe_A

353-7236 353-7122 555-1212

Key (name)

Value
%phone =

Hash Rules:

• Names have the same rules as any other
variables (no spaces, etc.)

• A hash is preceded by a „%‟ sign
$value => scalar variable
@array => array variable
%hash => hash variable

• A hash key can be any string

• Hash keys are unique!!
– You may not have two keys in a hash with the

same name.

– You may not have two keys in a hash with the
same name. Ever. Really. I mean it this time.

Creating a hash

• There are several methods for creating a hash.
The most simple way – assign a list to a hash.
– %hash = („rob‟, 56, „joe‟, 17, „jeff‟, „green‟);

• Perl is smart enough to know that since you
are assigning a list to a hash, you meant to
alternate keys and values.
– %hash = („rob‟ => 56 , „joe‟ => 17, „jeff‟ => „green‟);

• The arrow („=>‟) notation helps some people,
and clarifies which keys go with which values.
The perl interpreter sees „=>‟ as a comma.

Getting at values

• You should expect by now that there is some

way to get at a value, given a key.

• You access a hash key like this:

– $hash{„key‟}

• This should look somewhat familiar

– $array[21] : refer to a value associated with a

specific index position in an array

– $hash{key} : refer to a value associated with a

specific key in a hash

Getting at values, continued

• Magic incantation: Given a hash

%somehash, you access the value in a

specific key by this notation:

$somehash{some_key}

• Memorize this incantation!!!

– If it helps, remember that you are getting a single

element out of the hash, hence the $ notation. To

tell perl it is a hash, you use curly braces „{}‟.

A phone book program

#!/usr/bin/perl –w

use strict;
my %phonenumbers = („Rob‟ => '353-7236',

„Matt‟ => '353-7122',
„Dave‟ => '353-5284',
„Jeff‟ => 'unlisted - go away');

print "Please enter a name:\n";
my $name = <STDIN>;
chomp $name;

print "${name}'s phone number is $phonenumbers{$name}\n";

note ${name} is a way to set off the variable name from any other
text

$name's may have been interpreted as the variable $name's

• Remember, keys must be unique. So,
while ($thing = <>){

chomp;
$hash{$thing}++
}

– $hash{key} is equal to „‟ the first time you
see an item – add one to it

– $hash{key} is equal to 1 the next time you
see the same thing, add one to it.

– And so on...

Count unique things with a hash

Printing a Hash

• Of course there is a way to print a hash.

It isn‟t as easy as printing an array:

– print @array; or print “@array”;

– There is no equivalent print %hash;

• We must visit each key and print its

associated value. Sounds like a job for

a loop...

• First, create a list of keys. Fortunately, there is
a function for that:
– keys %hash (returns a list of keys)

• Next, visit each key and print its associated
value:
foreach (keys %hash){

print “The key $_ has the value $hash{$_}\n”;

}

• One complication. Hashes do not maintain any
sort of order. In other words, if you put
key/value pairs into a hash in a particular
order, you will not get them out in that order!!

Printing a hash (continued)

• There is more than one right way to do it. Unfortunately, there are also

many wrong ways.

– 1. Always check and make sure the output is correct and logical

• Consider what errors might occur, and take steps to ensure that you are
accounting for them.

– 2. Check to make sure you are using every variable you declare.

• Use Strict !

– 3. Always go back to a script once it is working and see if you can
eliminate unnecessary steps.

• Concise code is good code.

• You will learn more if you optimize your code.

• Concise does not mean comment free. Please use as many comments as
you think are necessary.

• Sometimes you want to leave easy to understand code in, rather than
short but difficult to understand tricks. Use your judgment.

• Remember that in the future, you may wish to use or alter the code you
wrote today. If you don‟t understand it today, you won‟t tomorrow.

Programming in general and Perl in particular

Develop your program in stages. Once part of it works, save the
working version to another file (or use a source code control
system like RCS) before continuing to improve it.

When running interactively, show the user signs of activity.
There is no need to dump everything to the screen (unless
requested to), but a few words or a number change every few
minutes will show that your program is doing something.

Comment your script. Any information on what it is doing or why
might be useful to you a few months later.

Decide on a coding convention and stick to it. For example,
– for variable names, begin globals with a capital letter and privates

(my) with a lower case letter

– indent new control structures with (say) 2 spaces

– line up closing braces, as in: if (....) { }

– Add blank lines between sections to improve readibility

Programming in general and Perl in particular

2. Find the answer in ultimate-sequence.txt ?

(hint: use %AA1)

Oefeningen practicum 2

>ultimate-sequence

ACTCGTTATGATATTTTTTTTGAACGTGAAAATACTTTTCGTGC
TATGGAAGGACTCGTTATCGTGAAGTTGAACGTTCTGAATG
TATGCCTCTTGAAATGGAAAATACTCATTGTTTATCTGAAAT
TTGAATGGGAATTTTATCTACAATGTTTTATTCTTACAGAAC
ATTAAATTGTGTTATGTTTCATTTCACATTTTAGTAGTTTTTT
CAGTGAAAGCTTGAAAACCACCAAGAAGAAAAGCTGGTAT
GCGTAGCTATGTATATATAAAATTAGATTTTCCACAAAAAAT
GATCTGATAAACCTTCTCTGTTGGCTCCAAGTATAAGTACG
AAAAGAAATACGTTCCCAAGAATTAGCTTCATGAGTAAGAA
GAAAAGCTGGTATGCGTAGCTATGTATATATAAAATTAGATT
TTCCACAAAAAATGATCTGATAA

my %AA1 = (

'UUU','F',

'UUC','F',

'UUA','L',

'UUG','L',

'UCU','S',

'UCC','S',

'UCA','S',

'UCG','S',

'UAU','Y',

'UAC','Y',

'UAA','*',

'UAG','*',

'UGU','C',

'UGC','C',

'UGA','*',

'UGG','W',

'CUU','L',

'CUC','L',

'CUA','L',

'CUG','L',

'CCU','P',

'CCC','P',

'CCA','P',

'CCG','P',

'CAU','H',

'CAC','H',

'CAA','Q',

'CAG','Q',

'CGU','R',

'CGC','R',

'CGA','R',

'CGG','R',

'AUU','I',

'AUC','I',

'AUA','I',

'AUG','M',

'ACU','T',

'ACC','T',

'ACA','T',

'ACG','T',

'AAU','N',

'AAC','N',

'AAA','K',

'AAG','K',

'AGU','S',

'AGC','S',

'AGA','R',

'AGG','R',

'GUU','V',

'GUC','V',

'GUA','V',

'GUG','V',

'GCU','A',

'GCC','A',

'GCA','A',

'GCG','A',

'GAU','D',

'GAC','D',

'GAA','E',

'GAG','E',

'GGU','G',

'GGC','G',

'GGA','G',

'GGG','G');

3. Palindromes

What is the longest palindroom in palin.fasta ?

Why are restriction sites palindromic ?

How long is the longest palindroom in the genome ?

Hints:
http://www.man.poznan.pl/cmst/papers/5/art_2/vol5a
rt2.html

Palingram.pl

http://www.man.poznan.pl/cmst/papers/5/art_2/vol5art2.html
http://www.man.poznan.pl/cmst/papers/5/art_2/vol5art2.html

The „structure‟ of a Hash

• An array looks something like this:

• A hash looks something like this:

@array =
Index

Value

0 1 2

'val1' 'val2' 'val3'

Rob Matt Joe_A

353-7236 353-7122 555-1212

Key (name)

Value
%phone =

$a=5;
$b=9;
$sum=Optellen(5,9);
print "The SUM is $sum\n";

sub Optellen()
{
$d=@_[0];

$e=@_[1];

#alternatively we could do this:
my($a,$b)=@_;
my($answer)=$d+$e;
return $answer;

}

Sub routine

Overview

• Advanced data structures in Perl

• Object-oriented Programming in Perl

• Bioperl: is a large collection of Perl

software for bioinformatics

• Motivation:

– Simple extension: “Multiline parsing“

more difficult than expected

• Goal: to make software modular,

easier to maintain, more reliable, and

easier to reuse

Multi-line parsing

use strict;

use Bio::SeqIO;

my $filename="sw.txt";

my $sequence_object;

my $seqio = Bio::SeqIO -> new (

'-format' => 'swiss',

'-file' => $filename

);

while ($sequence_object = $seqio -> next_seq) {

my $sequentie = $sequence_object-> seq();

print $sequentie."\n";

}

Advanced data structures in Perl

• The scalar, array and hash data

structures are builtin datatypes in Perl

and cover most programming needs

• More complex data structures can be

built from this basic ones

References: Scalars

• Advanced data structures depend on

Perl references. A reference is a scalar

variable that “points at” some other

value (the “referent”)

$peptide = “TGDTSGGT”;

$peptideref = \$peptide;

Print $peptideref.”\n”;

Print $$peptideref.”\n”;

Reference to arrays

@tags=("acacac","tgtgtgt","gcgcgc");

$tagref = \@tags;

print "@$tagref\n";

print $$tagref[1]."\n";

print $tagref->[1]."\n";

push (@$tagref,"aaaaa");

print "@tags";

References to hashes

%geneticmarkers =

('curly'=>'yes','hairy'=>'no','topiary'=>'yes');

$hashref = \%geneticmarkers;

print $hashref."\n";

foreach $k (keys %$hashref) {

print "key\t$k\t\tvalue\t$$hashref{$k}\n";

}

foreach $k (keys %$hashref) {

print "key\t$k\t\tvalue\t$hashref->{$k}\n";

}

Anonymous References

• A value need not be contained in a defined variable to

create a reference

• To create an anonymous array reference, use square

brackets instead of parentheses:

• $a_ref = [20, 30, 50, “hi!!”];

• @a = @$a_ref;

– @a (20, 30, 50, “hi!!”);

• For hash references, use curly brackets instead of

parentheses:

• $h_ref={“sky”=>„blue‟,“grass”=>„green‟}

• %h = %$h_ref;

– %h (“sky” => „blue‟, “grass” => „green‟);

Anonymous …

Programming paradigms

• Declarative (procedural) programming

– Perl, C, Fortran, Pascal, Basic, …

• Functional programming

– Lisp, SML, …

• Logic programming

– Prolog

• Object-oriented programming

– Perl, C++,Smalltalk, Java, …

The key idea

• All data is stored and used by means

of objects, and each object can only be

accessed by means of the defined

subroutines call methods.

• Together, the objects and methods

constitute a class

• Warning: a lot of conflicting

terminology among 00 practitioners

Perl 00

• A class is a package

• An object is a reference to a data

structure (usually a hash) in a class

• A method is a subroutine in the class

Perl Classes

• Modules/Packages

– A Perl module is a file that uses a package

declaration

– Packages provide a separate namespace for

different parts of program

– A namespace protects the variable of one part of

a program from unwanted modification by

another part of the program

– The module must always have a last line that

evaluates to true, e.g. 1;

– The module must be in “known” directory

(environment variable)

• Eg … site/lib/bio/Sequentie.pm

Bioperl.pl

use Bio::Sequentie;

use Data::Dumper;

%sequence_object =
(_id=>"AF001",_name=>"Demo",_seq=>"ATGAT
G");

print Dumper(%sequence_object);

$seqRef = \%sequence_object;

Bio::Sequentie::RandomSeq($seqRef,100);

print Dumper($seqRef);

.. /site/lib/bio/Sequentie.pm

package Bio::Sequentie;

use strict;

use Data::Dumper;

sub RandomSeq {

my @nucleotides = ('A','C','G','T');

my $self = shift;

#print $self;

print Dumper($self);

my $length = shift || 40;

print $length;

$self->{_id} = "0000";

$self->{_name} = "Random Sequence";

$self->{_seq}="";

for (my $i = 0; $i < $length; $i++) {

my $base = $nucleotides[int(rand(4))];

$self->{_seq} .= $base;

}

#return 1;

}

1;

Bless

• Making objects … Bless attaches a

class name to a reference, making it

possible to use references as objects in

a class

Bioperl.pl

use Bio::Sequentie;

use Data::Dumper;

%sequence_object =
(_id=>"AF001",_name=>"Demo",_se
q=>"ATGATG");

$seqRef = \%sequence_object;

bless ($seqRef,"Bio::Sequentie");

$seqRef->RandomSeq(100);

print Dumper($seqRef);

Bless

• Making objects … Bless attaches a

class name to a reference, making it

possible to use references as objects in

a class

• New is the usual name given to the

special method in the class that creates

a new class object (CONSTRUCTOR)

Method: NEW (constructor)

sub new {

print "new";

my ($class, $id, $name, $seq) = @_;

my $ref =

{_id=>$id,_name=>$name,_seq=>$se

q};

return bless $ref, $class;

}

Random Sequence an OO Way

use Bio::Sequentie;

use Data::Dumper;

$seqRef=Bio::Sequentie-
>new("007","Constructor","it works");

print Dumper($seqRef);

$seqRef->RandomSeq(100);

print Dumper($seqRef);

Review

• Three OO rules

– Classes are packages

– Methods are subroutines

– Objects are blessed referents

• Bless ($seq, “Bio::Seq”;)

CPAN

• CPAN: The Comprehensive Perl

Archive Network is available at

www.cpan.org and is a very large

respository of Perl modules for all

kind of taks (including bioperl)

http://www.cpan.org/

What is BioPerl?

• An „open source‟ project
– http://bio.perl.org or http://www.cpan.org

• A loose international collaboration of
biologist/programmers
– Nobody (that I know of) gets paid for this

• A collection of PERL modules and methods for
doing a number of bioinformatics tasks
– Think of it as subroutines to do biology

• Consider it a „tool-box‟
– There are a lot of nice tools in there, and (usually)

somebody else takes care of fixing parsers when
they break

• BioPerl code is portable - if you give somebody
a script, it will probably work on their system

What BioPerl isn‟t

• „Out of the box‟ solutions to problems

– You will have to know a little perl, and you will have

to read documentation

• Particularly well documented

– Yes, there is documentation, but it can be difficult to

see the „big picture‟ - or sometimes the small picture

• It can be a substantial investment in time to

learn how to use bioperl properly

– Once you get used to it, it is pretty simple to

do some complicated things

Installing Modules

Steps for installing modules
Uncompress the module

Gunzip file.tar.gz

Tar –xvf file.tar

perl Makefile.PL

make

make test

make install

Bioperl installation

• PPM

• Perl Package Manager

• Search Bioperl

• Install Bioperl

• What is the PPM?

• The Programmer's Package Manager (PPM), formerly known
as the Perl Package Manager, provides a command line
interface for managing your modules and extensions
(packages). PPM is used to access package repositories (or
collections of packages on other machines), install and
remove packages from your system, as well as update
previously installed packages with the latest versions.

• E:\Perl\Bin\ppm

Installation on Windows (ActiveState)

• Using PPM shell to install BioPerl

– Get the number of the BioPerl repository:
– PPM>repository

– Set the BioPerl repository, find BioPerl, install
BioPerl:

– PPM>repository set <BioPerl repository number>

– PPM>search *

– PPM>install <BioPerl package number>

• Download BioPerl in archive form from

– http://www.BioPerl.org/Core/Latest/index.shtml

– Use winzip to uncompress and install

http://www.bioperl.org/Core/Latest/index.shtml

Directory Structure

• BioPerl directory structure organization:

– Bio/ BioPerl modules

– models/ UML for BioPerl classes

– t/ Perl built-in tests

– t/data/ Data files used for the tests

– scripts/ Reusable scripts that use BioPerl

– scripts/contributed/ Contributed scripts not

necessarily integrated into BioPerl.

– doc/ "How To" files and the FAQ as XML

Let the code begin

Seq Objects

SeqIO Objects

Sequence Object Creation

Sequence Creation :

$sequence = Bio::Seq->new(-seq => „AATGCAA‟);

$sequence = Bio::Seq->new(-file => „sequencefile.fasta‟);

$sequence = Bio::Seq->new(-file => „sequencefile‟,

-ffmt => „gcg‟);

Flat File Format Support :

Raw, FASTA, GCG, GenBank, EMBL, PIR

Via ReadSeq: IG, NBRF, DnaStrider, Fitch, Phylip, MSF, PAUP

Multi-line parsing

use strict;

use Bio::SeqIO;

my $filename="sw.txt";

my $sequence_object;

my $seqio = Bio::SeqIO -> new (

'-format' => 'swiss',

'-file' => $filename

);

while ($sequence_object = $seqio -> next_seq) {

my $sequentie = $sequence_object-> seq();

print $sequentie."\n";

}

Live.pl

#!e:\Perl\bin\perl.exe -w

script for looping over genbank entries, printing out name

use Bio::DB::Genbank;

use Data::Dumper;

$gb = new Bio::DB::GenBank();

$sequence_object = $gb->get_Seq_by_id('MUSIGHBA1');

print Dumper ($sequence_object);

$seq1_id = $sequence_object->display_id();

$seq1_s = $sequence_object->seq();

print "seq1 display id is $seq1_id \n";

print "seq1 sequence is $seq1_s \n";

Live2.pl

#!e:\Perl\bin\perl.exe -w

script for looping over genbank entries, printing out name

use Bio::DB::Genbank

$gb = new Bio::DB::GenBank();

$sequence_object = $gb->get_Seq_by_id('MUSIGHBA1');

$seq1_id = $sequence_object->display_id();

$seq1_s = $sequence_object->seq();

print "seq1 display id is $seq1_id \n";

print "seq1 sequence is $seq1_s \n";

$sequence_object = $gb->get_Seq_by_acc('AF303112');

$seq2_id = $sequence_object->display_id();

$seq2_s = $sequence_object->seq();

print "seq2 display id is $seq2_id \n";

print "seq2 sequence id is $seq2_s \n";

$seqio = $gb->get_Stream_by_id(

[qw(2981014 J00522 AF303112)]);

$c=0;

while ($sequence_object = $seqio->next_seq()){

$c++;

print "Display id ($c) in stream is ", $sequence_object->display_id() ,"\n";

}

File converter

#!/opt/perl/bin/perl -w

#genbank_to_fasta.pl

use Bio::SeqIO;

my $input = Bio::SeqIO::new->(„-file‟ => $ARGV[0],

„-format‟ =>

„GenBank‟);

my $output = Bio::SeqIO::new->(„-file‟ => „>output.fasta‟,

„-format‟ => „Fasta‟);

while (my $seq = $input->next_seq()){

$output->write_seq($seq)

}

Changing Formats (with Filehandles):

#!/opt/perl/bin/perl -w

#genbank_to_fasta_with_filehandles.pl

use Bio::SeqIO;

my $input = Bio::SeqIO::newFh->(„-file‟ => $ARGV[0],

„-format‟ =>

„GenBank‟);

my $output = Bio::SeqIO::newFh->(„-format‟ => „Fasta‟);

while (<$input>){

print $output $_

}

• Bptutorial.pl

• It includes the written tutorial as well

as runnable scripts

• 2 ESSENTIAL TOOLS

– Data::Dumper to find out what class your

in

– Perl bptutorial (100 Bio::Seq) to find the

available methods for that class

Oef 1

• Zoek het meest zure en het meest basische aminozuur in Swiss-Prot
door het isoelectrisch punt te berekenen.

• Is er een biologische verklaring voor de gevonden resultaten ?

Uit AAIndex

H ZIMJ680104

D Isoelectric point (Zimmerman et al., 1968)

R LIT:2004109b PMID:5700434

A Zimmerman, J.M., Eliezer, N. and Simha, R.

T The characterization of amino acid sequences in proteins by statistical

methods

J J. Theor. Biol. 21, 170-201 (1968)

C KLEP840101 0.941 FAUJ880111 0.813 FINA910103 0.805

I A/L R/K N/M D/F C/P Q/S E/T G/W H/Y I/V

6.00 10.76 5.41 2.77 5.05 5.65 3.22 5.97 7.59 6.02

5.98 9.74 5.74 5.48 6.30 5.68 5.66 5.89 5.66 5.96

• Database

– (choose)

http://www.ebi.ac.uk/swissprot/FTP/ftp.h

tml

– (small)

– http://biobix.ugent.be/zip/swiss-prot.zip

http://www.ebi.ac.uk/swissprot/FTP/ftp.html
http://www.ebi.ac.uk/swissprot/FTP/ftp.html
http://biobix.ugent.be/zip/swiss-prot.zip
http://biobix.ugent.be/zip/swiss-prot.zip
http://biobix.ugent.be/zip/swiss-prot.zip

Oef 2

• CpG Islands

– Download from ENSEMBL 100 (random) promoters
(3000 bp)

– How many times would you expect to observe CG if all
nucleotides were equipropable

– Count the number op times CG is observed for these 100
genes and make a histogram from these scores

– CG repeats are often methylated. In order to study
methylation patterns bisulfide treatment of DNA is used.
Bisulfide changes every C which is not followed by G
into T. Generate computationally the bisulfide treated
version of DNA.

– How would you find primers that discriminate between
methylated and unmethylated DNA ? Given that the
genome is 3.109 bp how long do you need to make a
primer to avoid mispriming ?

So what is BioPerl? (continued…)

• 551 modules (incl. 82 interface

modules)

• 37 module groups

• 79,582 lines of code (223,310 lines

total)

• 144 lines of code per module

• For More info: BioPerl Module

Listing

../Cursus2004/Bioperl_modules.doc
../Cursus2004/Bioperl_modules.doc

Searching for Sequence Similarity

• BLAST with BioPerl

• Parsing Blast and FASTA Reports

– Search and SearchIO

– BPLite, BPpsilite, BPbl2seq

• Parsing HMM Reports

• Standalone BioPerl BLAST

Remote Execution of BLAST

• BioPerl has built in capability of running BLAST
jobs remotely using RemoteBlast.pm

• Runs these jobs at NCBI automatically

– NCBI has dynamic configurations (server side) to
“always” be up and ready

– Automatically updated for new BioPerl Releases

• Convenient for independent researchers who do not
have access to huge computing resources

• Quick submission of Blast jobs without tying up
local resources (especially if working from
standalone workstation)

• Legal Restrictions!!!

Example of Remote Blast

A script to run a remote blast would be something like the
following skeleton:

$remote_blast = Bio::Tools::Run::RemoteBlast->new(
'-prog' => 'blastp','-data' => 'ecoli','-expect' => '1e-
10');

$r = $remote_blast->submit_blast("t/data/ecolitst.fa");

while (@rids = $remote_blast->each_rid) { foreach
$rid (@rids) {$rc = $remote_blast-
>retrieve_blast($rid);}}

In this example we are running a blastp (pairwise comparison)
using the ecoli database and a e-value threshold of 1e-10.
The sequences that are being compared are located in the file
“t/data/ecolist.fa”.

Example

It is important to note that all command line options that fall
under the blastall umbrella are available under
BlastRemote.pm.

For example you can change some parameters of the remote job.

Consider the following example:

$Bio::Tools::Run::RemoteBlast::HEADER{'MATRI
X_NAME'} = 'BLOSUM25';

This basically allows you to change the matrix used to BLOSUM
25, rather than the default of BLOSUM 62.

Parsing Blast Reports

• One of the strengths of BioPerl is its ability to

parse complex data structures. Like a blast

report.

• Unfortunately, there is a bit of arcane

terminology.

• Also, you have to „think like bioperl‟, in order

to figure out the syntax.

• This next script might get you started

Sample Script to Read and Parse BLAST Report

Get the report $searchio = new Bio::SearchIO (-format =>
'blast', -file => $blast_report);

$result = $searchio->next_result; # Get info about the entire
report $result->database_name;

$algorithm_type = $result->algorithm;

get info about the first hit $hit = $result->next_hit;

$hit_name = $hit->name ;

get info about the first hsp of the first hit $hsp =

$hit->next_hsp;

$hsp_start = $hsp->query->start;

Parsing BLAST Using BPlite, BPpsilite, and BPbl2seq

• Similar to Search and SearchIO in
basic functionality

• However:

– Older and will likely be phased out in the
near future

– Substantially limited advanced
functionality compared to Search and
SearchIO

– Important to know about because many
legacy scripts utilize these objects and
either need to be converted

Parse BLAST output

#!/opt/perl/bin/perl -w

#bioperl_blast_parse.pl

program prints out query, and all hits with scores for each blast result

use Bio::SearchIO;

my $record = Bio::SearchIO->new(-format => „blast‟, -file => $ARGV[0]);

while (my $result = $record->next_result){

print “>”, $result->query_name, “ “, $result->query_description, “\n”;

my $seen = 0;

while (my $hit = $result->next_hit){

print “\t”, $hit->name, “\t”, $hit->bits, “\t”, $hit->significance, “\n”;

$seen++ }

if ($seen == 0) { print “No Hits Found\n” }

}

Parse BLAST in a little more detail

#!/opt/perl/bin/perl -w

#bioperl_blast_parse_hsp.pl

program prints out query, and all hsps with scores for each blast result

use Bio::SearchIO;

my $record = Bio::SearchIO->new(-format => „blast‟, -file => $ARGV[0]);

while (my $result = $record->next_result){

print “>”, $result->query_name, “ “, $result->query_description, “\n”;

my $seen = 0;

while (my $hit = $result->next_hit{

$seen++;

while (my $hsp = $hit->next_hsp){

print “\t”, $hit->name, “has an HSP with an evalue of: “,

$hsp->evalue, “\n”;}

if ($seen == 0) { print “No Hits Found\n” }

}

SearchIO parsers:

• SearchIO can parse (and reformat) several

formats containing alignment or similarity

data:

– blast

– xml formatted blast (still a little wonky)

– psi-blast

– exonerate

– WABA

– FASTA

– HMMER

• The interface is the same for all of these,

making your life a little easier.

What else is in BioPerl?

– Cluster or Assembly tools

– Protein structure tools

– Graphics

– Database functions

– Phylogeny tools

– Bibliography tools

– …

Some advanced BioPerl

• What if you want to draw pretty images of blast

reports? Bio::Graphics to the rescue:

• Input - A blast report (single query):

• Output:

Some really advanced BioPerl

• What if you want to display an entire genome with

annotation? Grow your own genome project

– We can do that all in BioPerl (and a mySQL or Oracle

database):

• GBrowse - the Generic Genome Browser

– Allows any feature to be displayed on a reference sequence

– Many different styles of „Glyphs‟, so all features can be

drawn in a different style

– Allows user to zoom in and out on reference sequence

– User can select which features to display

– User can upload their own features to be displayed on your

reference sequence

– And more!!!

• http://www.bch.msu.edu/cgi-bin/gbrowse

• http://www.gmod.org/

GBrowse (Generic Genome Browser)

Palin.fasta

• >palin.fasta

• ATGGCTTATTTATTTGCCCACAAGAACTTAGGTGCATTGAAATCTAAA
GCTAATTGCTTATTTAGCTTTGCTTGGCCTTTTCACTTAAATAAAACA
TAGCATCAACTTCAGCAGGAATGGGTGCACATGCTGATCGAGGTGG
AAGAAGGGCACATATGGCATCGGCATCCTTATGGCTAATTTTAAATG
GAGAACTTTCTAAAGTCACGTTTTCACATGCAATATTCTTAACATTTT
CAATTTTTTTTGTAACTAATTCTTCCCATCTACTATGTGTTTGCAAGAC
AATCTCAGTAGCAAACTCCTTATGCTTAGCCTCACCGTTAAAAGCAA
ACTTATTTGGGGGATCTCCACCAGGCATTTTATATATTTTGAACCACT
CTACTGACGCGTTAGCTTCAAGTAAACCAGGCATCACTTCTTTTACG
TCATCAATATCATTAAGCTTTGAAGCTAGAGGATCATTTACATCAATT
GCTATTACTTAGCTTAGCCCTTCAAGTACTTGAAGGGCTAAGCTTCC
AATCTGTTTCACCATTGTCAATCATAGCTAAGACACCCAGCAACTTAA
CTTGCAAAACAGATCCTCTTTCTGCAACTTTGTAACCTATCTCTATTA
CATCAACAGGATCACCATCACCAAATGCATTAGTGTGCTCATCAATA
AGATTTGGATCCTCCCAAGTCTGTGGCAAAGCTCCATAATTCCAAGG
ATAACC

Palingram.pl
#!E:\perl\bin\perl -w

$line_input = "edellede parterretrap trap op sirenes en er is popart test";

$line_input =~ s/\s//g;

$l = length($line_input);

for ($m = 0;$m<=$l-1;$m++)

{

$line = substr($line_input,$m);

print "length=$m:$l\t".$line."\n";

for $n (8..25)

{

$re = qr /[a-z]{$n}/;

print "pattern ($n) = $re\n";

$regexes[$n-8] = $re;

}

foreach (@regexes)

{

while ($line =~ m/$_/g)

{

$endline = $';

$match = $&;

$all = $match.$endline;

$revmatch = reverse($match);

if ($all =~ /^($revmatch)/)

{

$palindrome = $revmatch . "*" . $1 ;

$palhash{$palindrome}++;

}

}

}

}

print "Set van palingram\n";

while(($key, $value) = each (%palhash))

{

print "$key => $value\n";

}

